Degeneration of the Leray Spectral Sequence for Certain Geometric Quotients

نویسندگان

  • C. A. M. PETERS
  • J. H. M. STEENBRINK
چکیده

We prove that the Leray spectral sequence in rational cohomology for the quotient map Un,d → Un,d/G where Un,d is the affine variety of equations for smooth hypersurfaces of degree d in P(C) and G is the general linear group, degenerates at E2. 2000 Math. Subj. Class. 14D20, 14L35, 14J70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 1 Degeneration of the Leray spectral sequence for certain geometric quotients

We prove that the Leray spectral sequence in rational cohomology for the quotient map U n,d → U n,d /G where U n,d is the affine variety of equations for smooth hypersurfaces of degree d in P n (C) and G is the general linear group, degenerates at E 2 .

متن کامل

2 5 Ja n 20 02 Degeneration of the Leray spectral sequence for certain geometric quotients

We prove that the Leray spectral sequence in rational cohomology for the quotient map U n,d → U n,d /G where U n,d is the affine variety of equations for smooth hypersurfaces of degree d in P n (C) and G is the general linear group, degenerates at E 2 .

متن کامل

Fibered Symplectic Cohomology and the Leray-serre Spectral Sequence

We define Symplectic cohomology groups FH∗ [a,b] (E), −∞ ≤ a < b ≤ ∞ for a class of symplectic fibrations F →֒ E −→ B with closed symplectic base and convex at infinity fiber. The crucial geometric assumption on the fibration is a negativity property reminiscent of negative curvature in complex vector bundles. When B is symplectically aspherical we construct a spectral sequence of Leray-Serre ty...

متن کامل

Fibered Symplectic Homology and the Leray-serre Spectral Sequence

We define Floer (or Symplectic) cohomology groups FH ]a, b] (E), −∞ ≤ a < b ≤ ∞ for a class of monotone symplectic fibrations F →֒ E −→ B with closed symplectic base and convex at infinity fiber. The crucial geometric assumption on the fibration is a negativity property reminiscent of negative curvature in complex vector bundles. Our construction is a fibered extension of a construction of Viter...

متن کامل

Adiabatic Limits, Nonmultiplicativity of Signature, and Leray Spectral Sequence

We first prove an adiabatic limit formula for the rf-invariant of aDirac operator, generalizing the recent work of J.-M. Bismut and J. Cheeger.An essential part of the proof is the study of the spectrum of the Dirac op-erator in the adiabatic limit. A new contribution arises in the adiabatic limitformula, in the form of a global term coming from the (asymptotically) verysmal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003